Exercise 1 Let $f(x, y)= \begin{cases}\left(x^{2}+y^{2}\right) \sin \left(\frac{1}{x^{2}+y^{2}}\right) & (x, y) \neq(0,0) \\ 0 & (x, y)=(0,0)\end{cases}$
a) Show that f is continuous at $(0,0)$
b) Find $\frac{\partial f}{\partial x}(0,0)$, and $\frac{\partial f}{\partial y}(0,0)$
c) Show that f is differentiable at $(0,0)$

Exercise 2 Consider a function $f(x, y)$ such that

$$
f(1,2)=10, \quad \vec{\nabla} f(1,2)=3 \vec{i}+4 \vec{j}, \quad \vec{\nabla} f(3,4)=5 \vec{i}+6 \vec{j}, \quad \vec{\nabla} f(5,6)=\vec{i}+2 \vec{j}
$$

a) Find the directional derivative of f at the point $P_{0}(5,6)$ in the direction of the vector $\vec{v}=(3,4)$
b) Find an approximate value for $f(1.02,1.99)$
(you can use either methods: 1) $\Delta f=f_{x} \Delta x+f_{y} \Delta y+\varepsilon \sqrt{x^{2}+y^{2}}$ or 2) $\left.d f=\left(D_{u} f\right) \times d s\right)$
c) Find the partial derivative $\frac{\partial}{\partial s}\left[f\left(s^{2}+t^{2}, 3 s t\right)\right]_{(s, t)=(1,2)}$

Exercise 3 Suppose that the derivative of the function $f(x, y, z)$ at the point $(1,1,1)$ is greatest in the direction of $\vec{p}=6 \vec{i}-3 \vec{j}+3 \vec{k}$, and that in this direction the value of the derivative is $\sqrt{6}$. Also suppose that
$f(3,0,-1)=1, \quad \vec{\nabla} f(3,0,-1)=3 \vec{i}-\vec{j}+5 \vec{k}, \quad \vec{\nabla} f(3,2,1)=6 \vec{i}-2 \vec{j}+\vec{k}, \quad \vec{\nabla} f(0,-1,1)=\vec{i}+\vec{j}+\vec{k}$
a) Find the directional derivative of f at the point $(3,2,1)$ in the direction of the vector $\vec{i}+\vec{j}+\sqrt{2} \vec{k}$
b) Find $\vec{\nabla} f(1,1,1)$
c) Is there a unit vector \vec{q} such that $D_{u} f(3,0,-1)=6$? justify your answer
d) Find the normal line to the surface $f(x, y, z)$ at the point $(3,0,-1)$
e) Let $x=u, y=v-2$, and $z=v-u$, and $g=f(x, y, z)$.

Find $\frac{\partial g}{\partial u}$ and $\frac{\partial g}{\partial v}$ at the point $(u, v)=(3,2)$
f) Let $g=g(u, v)$ be as in part e). Find a plane tangent to the surface

$$
g(u, v)=2 w^{2}-1
$$

in the $u v w$-space
(hint: start by finding a point $(u, v, w)=(?, ?, ?)$ on the surface)

